anced Manufacturing and Automation

GIGre e

UNIVERSITY OF BRISTOL
=2

B @
[EE =

PROCEEDINGS

EURISCON '94

European Robotics and Intelligent Systems Conference

Yolume 2 (Stream B)

Malaga, Spain August 22 - 25 1994

A METHODOLOGY FOR THE DEVELOPMENT OF AN OBJECT-
ORIENTED CONTROL ARCHITECTURE

Nicolas Delpech, Yann Plihon, Michel Llibre
CERT/DERA .
2, avenue Edouard Belin.
31400 Toulouse, France
Phone: (33) 62 25 25 25
Fax: (33) 62 25 25 64
e-mail: delpech@saturne.cert.fr
plihon@saturne.cert.fr
llibre@saturne.cert.fr

"ABSTRACT

A control system is often divided into two levels: the planning level and the executive
level. We propose to define a generic software architecture of the executive level to make it
the most independent possible of the application. We lean on a multi-agent real-time
communication system (CESAM) defined at CERT-DERA. The selected agent model is the
one of an executive agent considered as an extension of the usual object model. The
definition of this architecture will be divided into two levels:

- a design level based on the usual objet-oriented paradigm which provides such
mechanisms as inheritance and polymorphism allowing to satisfy the goals of software
extensibility, reusability and portability.

- a distribution level which precises the type of activity and access to the methods of
the objects achieved at the design level, according to the agent model defined by CESAM.

The application’s programmer disposes of a programming method: his work is
concentrated on the design of the application from the basic classes defined by our
architecture, the distribution (communication, synchronization) of the new agent being made
transparent by these same basic classes.

Once this environment of robotic application is defined, we describe how hybrid
control have been developed on a parallel robot used as master device for an experimental
teleoperation set-up from this architecture.

1. INTRODUCTION

A control system may be defined as a set of software and hardware entities handling

real-time data coming from:
- the physical process it controls through the hardware,
- the human operator or a planning level which uses the control system to act
on the process itself.

The control system has to ensure the data flow (data acquisition, sending the
commands,...) with the process according to its dynamics ranging from a few microseconds
to some milliseconds.

In our case, these physical systems are mainly robots and all devices going with them:
sensors (camera, force sensors, encoders), effectors,...etc.

If the separation between the physical process and the control system is relatively easy
to do, on the contrary, it is not so easy to do it between the planning system and the control
system.

1014

The software layers interface with the process to control is achieved through the
hardware (input/output boards) which is more and more efficient and easy to use.

On the contrary, the planning system often considered as a decision level, deals with
larger scopes with the increasing complexity of application. We usually consider that the
decision level handles mainly symbolic data which are more adapted to define complex tasks
and mission either automatically or by an operator. The interface between the decision leve]
and the control level may be defined as the bidirectionnal translation from symbolic data into
action-oriented data: it is the command interpreting level.

Through large researches in the field of Artificial Intelligence and specially in the field
of Distributed Artificial Intelligence [1], the multi agents-oriented concept deals with the field
of modelling and definition of decision and planning architectures. It allows to design the
process behaviour and to organize the diverse decision layers involving action and
perception so that an adequate reactivity at the lower level and an intelligent control at the
higher level is kept.

By using this approach in order to structure a control system, we can achieve a unitary
viewpoint between the structure of decision and control levels. At the same time, we mus
satisfy the real-time constraints required by this last one which is the matter of our work.

As part of CERT-DERA research works [3][4], an agent-oriented model is proposed
from which real-time applications can be developed. This executive agent-oriented model is
defined as an extension of the standard object model which allows us to use the object-
oriented paradigm.

We propose then an application programming methodology from robotic devices
designed as standard objects or agents. The application programmer will structure his
application from these objects.

At the end, we will present an hybrid control architecture for a robot used as a master
device on a teleoperation set-up.

2. OBJECT-ORIENTED REAL-TIME PROGRAMMING

2.1. Introduction

The object-oriented paradigm [5][2] is based on an unifying idea including: the object,
a data structure, and the methods to use them.

Unlike functional approaches which consider a program as a set of routines and
separated data these routines act on, the object-oriented approach considers a program as a
set of independent objects communicating thanks to messages.

If the object-oriented paradigm improves software structuring, it is not well-suited to
develop real-time softwares. An extended object model [6] [7](8] will allow us to develop
such softwares.

2.2. Object-oriented language

The object-oriented paradigm deals with two main viewpoints:
- the structural viewpoint: an object is seen as a data structure joined to a
class-named object. A class is the abstract data model of a set of entities
sharing the same structure and having the same behaviour.
- the activity-oriented viewpoint: an object is seen as a little software entity
both active and autonomous which interacts with other entities through
messages. In this case, we focus on the behaviour of the object rather than its
structure. So, we achieve an actor-oriented model [9][10].

1015

2.2.1. Structural viewpoint: class-oriented language

The class-oriented language used in our work is the C++ language [11]. In this case, a
class is composed of a static part which corresponds with its status and the connections with
other objects, and a dynamic part which describes its behaviour, in other words, its whole
functions and its event reacting way.

Three mechanisms characterized this class-oriented language: instantiation, inheritance
and polymorphism.

* instantiation: a class is the conceptual entity which describes the object
(encapsulation property). Its definition is used as a model to design its physical
representatives as class instance.

* inheritance: it is possible by inheritance to define other more specific classes which
precise the parent class scope. Two inheritance types exist:

- simple inheritance; a subclass possesses only a direct parent class,
- multiple inheritance; a subclass can possess several direct parent classes.

Once the whole classes are defined, a tree of classes is achieved. The inheritance
notion induces a programming method which proceeds by successive derivations from the
generic classes.

*polymorphism: it represents literally an entity having several forms. We can
distinguish three polymorphism types:

- inheritance polymorphism; a subclass instance can be used as a parent class
instantiated object.

- function polymorphism; a same function can own arguments being able to
have several types.

- ad hoc named polymorphism; methods belonging to different classes can
have the same selector.

However, this model is unsuited to resolve the problems of parallelism,
synchronization and distribution of real-time control systems.

2.2.2. Active-oriented viewpoint: actor-oriented language

Usually, the actor-oriented model adds to the encapsulation and abstraction
mechanisms, the notion of parallel activities and asynchronous communication. An actor is
then an autonomous and independent activity which communicates through asynchronous
messages. It is composed of:

- acquaintances which are the other actors that it directly knows,
- a script which describes its behaviour when it receives a message.

The proposed actor-oriented models usually involve a too much restrictive
homogeneity to develop control systems; besides, the class-oriented language structural
viewpoint is here away.

2.3. The extended object-oriented model.

In our CERT-DERA research work, we have proposed a non-uniformed object-
oriented model [3,4] made up by three object types:
- the standard objects coming from the standard model. They are local,
static and synchronous,
- the exported objects with remote access,
- the agents which are asynchronous, distributed and active objects.
* exported object
We add a remote interface to the two components of the standard object-oriented
model: private status and local interface. The local interface consists in the methods usually
named “public” and the remote interface in methods which are named “exported” and

1016

remotely called (but also locally). This remote interface extends the object invocation
mechanism to a distributed environment.

* agent [1]

The agent-oriented functional model (figure 1) provides four capacity ways:
- a specialization capacity representing its abilities.
- a self-control capacity representing its autonomy.
- an assignment capacity; its specialization does not allow it to deal with the
whole ability scopes. So, it assigns some tasks to its acquaintances which are
the agents whose abilities are needed to achieve its goals.
- a communication capacity which allows it to integrate a group (figure 2).

- 3
know-how (SPECIALIZATIo@(—(CONTROL) | independence

acquaintances DELEGATION

figure 1: executive agent functional model

The agent entity corresponds to the parallelism unity and is made of different objects.
Among these objects, the exported objects which correspond to the distribution unity, allow
the remote interface of the agent.

Sm—p-- client/server connection

figure 2: relationship-oriented architecture

1017

An agent takes part in activities during which its objects can communicate with the

ones of other agents. This communication carries out according to two ways:
- message-passing,
- remote call.

These two ways are possible thanks to a communication system designed as a minimal
kernel being able to equip any machine, whether real-time or not. It realizes the interface
between the application on the one hand, and the operating system (whether real-time or
not), the machine and the network on the other hand. The rules of this system are based
mainly on two hierarchical layers, each one providing a certain abstraction level:

- shared object-based communication: it allows asynchronous message-
passing between parallel agents on homogeneous machines.

- image object-based communication: an asynchronous communication
protocol is provided by remote call of active objects on homogeneous or
heterogeneous machines independently of the implementation locality. It is an
asynchronous and unblocking client/server protocol.

2.4. CESAM programming environment [3]
2.4.1. C++a language

We have now a model-based programming language (figure 3) from which we can
define objects with different abstraction levels: from the standard object to the executive
agent with parallel activities, asynchronous remote communication and reactive behaviours.
This language is defined as a C++ language’s extension to the multi agents-oriented C++a
language.

The communication between these objects is based on the shared object-based and
image object-based communications whose principles will not be described in this paper [3].

C++a programming language

image object-based communication

shared object-based communication

machine interface

operating system
(tasks, dynamic memory, events)

figure 3: communication system architecture

2.4.2. Implementation

At present, the previously defined notions are partly implemented. The achieved
experimental version only allows the communication between agents belonging to a same
computer whether multiprocessors or not. It also allows remote clients implemented on host
machine (SUN workstation in our case) to request services of agents running on a real-time
computer.

1018

This experimental version has been developed on multiple VME-based 68000 family
processors on a backplane network running the VxWorks operating system [12].

The extension of C++ language to a C++a multi agents-oriented language requires the
development of a precompiler in realization. For the moment, macro instructions have been
developed to make the application programming easier.

2.4.3. System agents

The CESAM environment software architecture (figure 4) is composed of four system
agents:

- a catalogue resolving the remote access problems by memorising the services
published by agents of its environment (in other words, of its running machine) in order to
pass them to their clients.

- asupervisor agent to pass messages sent by clients of other computers, to send
them to the assigned agents (servers) and to return reply messages.

- a synchronizer agent to control the activation and desactivation of agent’s exported
methods according to a determined script. Three synchronization ways are available:
sequential, parallel and coordinated. More complex synchronization scripts can be achieved
thanks to the synchronizer’s recursive property.

- a performer of application programs.

application's clients
host workstation
\
\ supervisor
\
application catalog
erformer
synchronizer
Application's agents real-time computer

———> Client/Server connection

figure 4: CESAM software architecture

1019

3. METHODOLOGY TO STRUCTURE ROBOT CONTROL SOFTWARE

3.1. Requirements for an application programmer

Usually, the robot control software development requires two competence levels:

- arobotic programming level: it focuses on diverse control laws like
joint and cartesian servoloops, guiding, trajectory generator,...etc.

- areal-time programming level: it focuses on communication,
synchronization between the diverse control system actors as well as their
distribution. In the case of robotic application, we must face with the
hardware control and the multiprocessors distribution.

The standard control programming according to a functional viewpoint induces
couplings between these two levels. Therefore, it makes the robotician work more complex;
indeed, the time spent to adjust the application real-time problems is usually more important
than the time spent to adjust the control laws.

Besides, these softwares are confronted with maintenance problems. The permanent
development of equipments leads to the possibility to replace some devices by identical ones,
or more efficient ones, or to add new ones during the application. The control system must
allow modifications without involving important modifications in the global architecture
[13].

3.2. Why to use CESAM?

The real-time programming concepts introduced in the previous paragraph, must
resolve several development constraints. As the standard object-oriented paradigm, this
programming way is more suited for the following reasons:

- it’s natural to model a system according to its physical reality as a set of objects
(standard objects, exported objects, agents) in order to carry out a particular task.

- modular and generic softwares as well as their extensibility are satisfied.

Besides,

- a certain modelling homogeneity can be respected between the different control levels
as well in the modelling level of the various control actors as in the communication level
between these actors.

- it improves software portability and reusability. The properties of CESAM
communication system enables to develop control softwares independently of the hardware
and computers.

3.3. Programming methodology

An architecture and a programming methodology are proposed here to reduce coupling
between the robotic programming level viewpoint and the real-time programming viewpoint
[14]. Therefore, it is why the control software’s structure is divided into two levels:

- modelling level,
- distribution level.

3.3.1. Modelling level

3.3.1.1. Definition

This level describes the application as a set of classes according to two object models:
standard objects (standard object-oriented model with local interface) and exported objects
(extended object-oriented model with local and remote interface). We do not precise the
activity mode of these objects, in others words, in which real-time background they run.

1020

The control level modelling as objects creates two class types:

- classes of physical objects which result from the modelling of the physical
devices to control (input/output driver, effector, encoder, sensor,
manipulator,...),

- classes of abstract objects which represent the various entities modelling the
control laws developed in a control software (joint and cartesian servo,
guiding, trajectory generator,...).

The first object type defines a convenient hardware’s interface by means of objects
seen as an image of this hardware. This image will be independent of the physical nature of
the devices which are modelled. A control software independent of hardware (computer,
electronic) could be developed making its evolution easier.

The second object type (abstract objects) defines robotic devices library modelling the
law of the various control levels.

3.3.1.2. Principle

The object-oriented modelling of control system usually appears as just one tree
designed from one or several generic classes (for instance, class robot) in order to achieve
the definition of specific application objects thanks to successive derivations. The definition
of one tree per application seems too much restrictive to realize a generic structure used for
different applications. We prefer designing a tree per control level. So, a set of dedicated
trees was achieved (figure 5). If there are structural ties between levels (trees), they are made
by aggregation of generic classes. Each tree is based on some generic classes. Their
specification is realized by simple or multiple inheritance while keeping the same interface.

ﬂ in hel'itance
...... > aggregation

figure 5: basic structural scheme

Note: it is essential that the generic classes of each tree should be as general as possible
in order that the available structure should be the less restrictive and as open as possible .

3.3.2. Distribution level

This level is based on: i
- the definition of generic agents modelling the main activity ways which are
usually required to the control structure: scheduled activity, data servers,
client/server communication protocol,...),
- the distribution of objects, resulting from the modelling level, into executive
agents which determine their activity way.

3.3.2.1. Generic agent

A generic agent designs a typical activity way of control systems. It encapsulates
control structure and communications required to this activity, from the two communication
levels provided by CESAM: shared object-based and image object-based communications.

At this point, the agent specialization abilities are not precised. The generic agents can
be divided into two sets:

- the ones with a client/server activity. The agent behaves like a server waiting
for requests to carry out. If there is no request, it is suspended. It concerns an
asynchronous activity.

- the ones with server + local activity. The local activity is synchronous (in
the robotic case, it concerns mainly a periodic-scheduled processes).
Sequentially to this activity, the agents carry out the received requests (it only
consults a request receiving without waiting for them).

3.3.2.2. Agent specialization

The generic agents are not directly feasible. In a second time, their ability field must be
specified. So, thanks to mechanisms such as inheritance, polymorphism and aggregation,
specific objects provided by modelling are joined to them. These objects can be either local
or exported. We also specify the agent acquaintances which describe the ability field
delegated to other agents.

This distribution into executive agents can be realized according to two contrary
approaches:

- a distributed approach which consists in joining an independent executive
agent to each object.

- a centralized approach which consists in joining as much objects as possible
into an executive agent to limit the number of activities for an application.

We do not want to force a particular approach but to allow the programmer to choose
an abstraction level specific to his application.

3.3.3. Conclusion

Control software development should lead to a direct application modelling without
taking into account the distribution. The objects so achieved are then joined into predefined
executive agents which interface the diverse activities required for such softwares. The
programmer needs neither great abilities to real-time programming, nor ones to CESAM
programming. Predefined objects and agents used by the programmer must be clearly
specified. Their right running must be guaranted because the programmer does not know
their software in most of cases. Nevertheless, the suggested structure must be open enough
in order that the programmer could develop himself specific agents which are not provided.
He will be able consequently to manipulate CESAM concepts.

1022

4. A ROBOT HYBRID CONTROL ARCHITECTURE

Instead of giving an exhaustive list of the objects defined for the control systems, we
are going to describe a specific control architecture: an hybrid position/force contro],
However, we will insist on the parting between the generic level of a robot hybrid contro]
and the application level based on our experimental set=up.

4.1. Generic level

4.1.1. Hybrid position/force control definition

The position/force hybrid control approach [15] consists in dividing the controlled
workspace of the robot in two complementary and orthogonal subspaces. In one of them,
the robot is position controlled and in the other subspace it is force controlled. The choice of
this space partition depends on the local interaction of the robot with its environment. The
unconstrained directions (with no obstacle) are position controlled and the constrained
directions (constrained by the environment) are force controlled. The space partition is
described by S, a 6*6 diagonal matrix. The diagonal elements are either O (in that case, the
corresponding axis is force controlled) or 1 (in that case, the corresponding axis is position
controlled). The behavior of hybrid controlled robots depends on the situation of the robot’s
frame, the space partition S and a set of positions desired Xd and forces desired Fd. As the
position loops and the force loops are independent, only the components of Xd (resp. Fd)
corresponding to the position (resp. the force) controlled subspace are taken into account by
the controller. We give a simplified scheme (figure 6) for hybrid position/force control.

position law | —

1

»{ ROBOT

figure 6: a simplified hybrid control scheme

4.1.2. Software structuring

From a structural viewpoint [16], the robot hybrid control software is naturally
organized according to three hierarchical layers:
- acquisition layer,
- joint servo layer,
- hybrid cartesian servo layer.
For each layer, a modelling phase and a distribution phase will be found.

1023

4.1.2.1. Acquisition level
input/output modelling

A control software running on real-time computer uses input/output devices to have
access to various sensors and effectors of the robot to control. It’s easy to model these
devices into generic objects in order to specify them according to the driver technical
features.

Two main components for an input/output board are considered:

- a board component which encapsulates the physical board’s features,
- a channel component which describes the board’s interface with its users.

Two generic channel classes are then defined: an input class and an output class as
well as their interface. On the contrary, it is not possible to define a generic board class
because the physical features are very different according to the hardware used. It is only
created at the application level.

This genericity facilitates an input/output board substitution easier without modifying
its users.

distribution

Input data (measure) have timing constraints. In the case of the hybrid control, it
concerns in particular, the integrity of the measure/date pair ensuring the right performance
of servoloops which run periodically. So, we define an acquisition agent as following:

- it ensures the measure/date integrity (periodical acquisition of encoders
measures),
- it manages the input/output shared device.

Indeed, two activities can not simultaneously have access to a board because a
definitive error of the backplane network occurs generally. Consequently, a data acquisition
agent is joined to each physical device. One agent can be joined to several boards but not
several agents to the same board.

Several parallel activities could be connected to an acquisition agent to be synchronized
with sensor measures. They could to wait for measures provided by a same physical device
without causing access problems. Moreover, the connection to this acquisition agent is
independent of the multi-CPU architecture.

Note: in the case of the acquisition agent providing force/position measures through
analogical boards, its activity must be run under IT timer. This agent may be considered as a
generic interface of timer device, designing the data periodical scheduled acquisition
protocol. '

Other acquisition agents could be defined without connecting their activity to an IT
timer (ultra-sound server, image acquisition server,...).

To make the programming of the activities scheduled on measure data easier, a generic
agent designing the connection to an acquisition agent is defined. It is a
SCHEDULED MODULE agent class. Each agent with a scheduled activity (from measure
or not) inherits from the SCHEDULED MODULE class.

The SCHEDULED MODULE class has these arguments:

- a scheduling period,
- an list of analogical inputs (this list can be empty),
- an agent activity’s priority.

4.1.2.2, Servo level

joint controller modelling(figure 7)
A tree modelling the various joint controllers required to the hybrid position/force

control is determined from a jointservo parent class whose two specific classes inherit,
modelling a position joint servo and a force one: P_jointservo and F_jointservo classes.

An effector generic parent class encapsulating effectors features and an inpur channel
object are aggregated with the jointservo parent class.

1024

input e mwmwe] jOINISErVO [= = = S effector LR KD output

P_jointservo F_jointservo

- inheritance
= = = = Sy aggregation

figure 7: joint servo level modelling

The servo objects distribution into executive agents is realized according to different

abstraction viewpoints, from the most distributed to the most centralized viewpoint:
- one executive agent per joint servo (ie 2n agents for a n axes robot),
- one agent per axis (ie one agent per position/force joint servo pair: n agents),
- one agent per joint servo type (ie one agent for the whole position joint
servos and one agent for the whole force joint servo: 2 agents),
- one agent joining the joint servos.

The two first viewpoints are not the best solution for our application because we often
try to reduce computing charge specially for an architecture with a limited number of
processors. As regards the choice between the two last viewpoints, it is done in accordance
with the application (see the application level chapter).

The two agents viewpoint allows to distribute them on two distinct CPU. So, we can
reach lower scheduling periods. But this viewpoint leads to the problem of command fusion
provided by position/force joint servos.

The one agent viewpoint facilitates the interface with higher level; it requires fewer
processors. The scheduling periods are more limited.

This two last viewpoints (figure 8) are also more suited to an eventual kinematic
coupling between the various axes.

In these two cases, the joint servo objects are local objects; the joint servo agents are
exported objects with exported methods as interface: position/force command setting,
position/force reading,...etc. These agents inherit from the SCHEDULED_MODULE agent
class.

1025

P_JOINTSERVO_MODULE agent

Posilionl

Position

P_jointservo & &
=¢ffector l Force

yly

YIYIY

F_jointservo

PF_JOINTSERVO_MODULE agent

F_JOINTSERVO_MODULE agent

two agents viewpoint one agent viewpoint

figure 8: joint servo agents

4.1.3. Hybrid cartesian level

1lin

Two classes are defined:
- an hybrid_direction class designing the hybrid servo control of a cartesian
direction,
- an hybrid _controller class designing a 6 axes hybrid control scheme and its
functions: interface methods (exported methods), definition of specific hybrid
control frames, geometric transformations between the frames. The methods
designing the robot mechanical structure (kinematic models, Jacobians,...)
are specified at the application level.

An hybrid_direction object is a local object. An hybrid_controller object is an

exported object aggregated with an hybrid_direction object list at the construction.

n

An HYBRID ROBOT executive agent class is defined from an hybrid_controller
exported object. This agent, as the joint servo module, inherits from the
SCHEDULED MODULE agent class: it consists in a local scheduled activity (hybrid
controller) joined to its interface (exported methods). These acquaintances are joint servo
agents to which it sends the position/force joint commands.

4.2. Application level

4.2.1. Robot presentation: a master robot [18]

This robot is a fully parallel device having six degrees of freedom. The moving part,
equipped with a handle that can be gripped by the operator, is connected to the fixed part

1026

through six pneumatic linear actuators. Hybrid control requires both position and force
control, and pneumatic control requires a high sampling rate: this control design is real time
costly. The real-time operating system, VxWorks, is supported by two processors running
in parallel (one 68040 MYME167 and one 68030 MVME147) and mounted on a VME rack.
The reading of the position and force sensors as well as the command writing for the
effectors are made by means of a CELOCIC board . _

This robot is used as a master device in a teleoperation experimental set-up which is
also composed of another hybrid controlled robot with six degrees of freedom: the slave
robot.

4.2.2. Software architecture

4.2.2.1. Joint servos

The input/output classes must be specified in accordance with the used boards. So, a
board class is created to encapsulate the CELOGIC input/output board’s features: a
CELOGIC board class. In the same way, two specific channel classes are defined:
CELOGIC _input class and CELOGIC output class (figure 9).

g (]

/

CELOGIC _input = = = =|CELOGIC_board | = = =3eiCELOGIC output

figure 9: input/output modelling

Regarding effectors, a specific class is defined for the used pneumatic effectors which
are carried out by two complementary servovalves (ie two analogical outputs):
pneumatic_effector class.

Regarding the joint servo controller, an only executive agent viewpoint is chosen as a
PF_JOINTSERVO_MODULE object implemented on a 68040 CPU with a 3ms scheduling
period (figures 11,12).

input =& -] jOinErV ke -)e_ﬂ'ector e == = = =3 output

ouftput

P_jointservo F_jointservo

output

figure 10: master robot joint level modelling

1027

4.2.2.2. Cartesian servocontrol

We use here the HYBRID ROBOT executive agent by specifying the robot kinematic
models; a MASTER_ROBOT class is defined. This agent is impiemented on the second
CPU (68030) with a 9ms scheduling period (figures 11,12).

HYBRID_CONTROLLER

PF_JOINTSERVO_MODULE /

rFo=sasseay

8 SLAVE _ROBOT MASTER_ROBOT
virtual class CEssssmewd

figure 11: robot hybrid control structuring

hybrid robot
interface
MASTER_ROBOT PF_JOINTSERVO_MODULE effectors
(hybrid level) (Jointservo level)
Ims
encoders
) ms (ACQUISITION S
AGENT Bogr

figure 12: functional architecture

1028

5. CONCLUSION

As part of the hybrid teleoperation set-up, in the same way we have defined a
MASTER_ROBOT class from the HYBRID _ROBOT class, we can define a specific class
for the slave robot of the experimental set-up, also with an hybrid control law. Afterwards,
we could design a generic teleoperation kernel independent of the used master and slave
robots. The kernel software will only handle virtual HYBRID ROBOT agents.

More gcncrally, we have proposed a control system structuring and programming
methodology in order to facilitate the robotician’s work, rather than a definitive architecture
that could not be completely generic. It must allow to lead his work to an application
modelling from libraries of generic objects (standard and exported objects), whereas the
whole real-time functions are previously modelled by executive agents.

To make this modelling work easier, it would be interesting, from the diverse generic
objects, to propose a graphic software [17] allowing to design trees to model the application.

This architecture type could also facilitates the simulation of the control software as
well as the definition of a graphic interface of the diverse objects in order to visualize their
status during their execution.

REFERENCES

[1] J. Ferber, “Objets et agents: une étude des structures de représentation et de
communication en Intelligence Artificielle”, These d’Etat-Université Paris VI, Juin 1989.

[2] J. Ferber, “Conception et Programmation par Objets”, Hermes,1990.

[3] F. Mefthou, “Systéme de commande temps-réel multi-agents”, These d’Etat ENSAE,
Décembre 1993.

[4] F. Mefthou and P. Carton, “Modele d’un agent exécutif temps-réel”, Premiéres journées
francophones IAD-SMA, Toulouse, France, April 1993.

[5] G. Booch, “Object-Oriented Design with Applications”, Benjamin Commings, 1986.

[6] P. Gautron, J.P. Briot, H. Saleh, S. Lemarie and L. Lescaudron, “Development of an
environment for specification and execution of active objects on parallel machines”,
European Workshop on Parallel Computing (EWPC’92), Barcelona, Spain, March 1992.
[7]1 A. Yonezawa, J.P. Briot, E. Shibayama, “Object-oriented concurrent programming in
ABCL/1”, Proceeding of the 1st OOPSLA, pp 258-268, Portland, Oregon, 1986.

[8] M. Fabrian and B. Lennartson, “Object-oriented structuring of real-time control
systems”, Control Engineering Laboratory, Chalmers University of Technology,
Gothenburg, Sweden, 1992.

[9] C.E. Hewit, P. Bishop and R. Steiger, “A universal modular ACTOR formalism for
Artificial Intelligence”, Proceeding of the 3rd IJCAI, pp 235-245, Stanford, California,
1973.

[10] G. Agha, “Actors: a model of concurrent computation in distributed systems”, MIT
Press, Cambridge, Masschusetts, 1986.

[11] B. Stroustrup, “Langage C++”, InterEditions, Paris, 1989.

[12] Wind River Systems, “VxWorks Programmer’s guide”.

[13] D.J. Miller and R.C. Lennox, “An object-oriented environment for robot systems
architecture”, IEEE, Control Systems, Vol. 11, Number 2, pp 14-23, February 1991.

[14] E. Coste-Maniere, B. Espiau and D. Simon, “Reactive objects in task level open
controller”, Proceeding of the 1992 IEEE, International Conference on Robotics and
Automation, pp 2732-2737, Nice, France, May 1992.

[15] M.H. Raiberg, J.J. Craig, “Hybrid position/force control of manipulators”, ASME
Journal of Dynamics Systems, Measurement and Control, pp 262-268, June, 1981.

1029

[16] R. Lumia, J. Fiala and A. Warering, “The NASREM robot control system and
testbed”, IEEE Journal of Robotics and Automation, Vol. 5 (N°1), pp 20-26, 1990.

[17] D. Simon, B.Espiau, E. Castillo, K. Kapellos, “Computer-aided design of a generic
robot controller handling reactivity and real-time control issues”, Rapport de recherche
INRIA N°1801, Nov 1992.

[18] Y. Briere, Y. Plihon, C. Reboulet, “The dual hybrid position-force concept for
teleoperation”, Euriscon 94, Malaga, Spain, 21-26 August, 1994.

1030

